Detection of Capillary-Mediated Energy Fields on a Grain Boundary Groove: Solid–Liquid Interface Perturbations

نویسنده

  • Martin Glicksman
چکیده

Grain boundary grooves are common features on polycrystalline solid–liquid interfaces. Their local microstructure can be closely approximated as a “variational” groove, the theoretical profile for which is analyzed here for its Gibbs–Thomson thermo-potential distribution. The distribution of thermo-potentials for a variational groove exhibits gradients tangential to the solid–liquid interface. Energy fluxes stimulated by capillary-mediated tangential gradients are divergent and thus capable of redistributing energy on real or simulated grain boundary grooves. Moreover, the importance of such capillary-mediated energy fields on interfaces is their influence on stability and pattern formation dynamics. The capillary-mediated field expected to be present on a stationary grain boundary groove is verified quantitatively using the multiphase-field approach. Simulation and post-processing measurements fully corroborate the presence and intensity distribution of interfacial cooling, proving that thermodynamically-consistent numerical models already support, without any modification, capillary perturbation fields, the existence of which is currently overlooked in formulations of sharp interface dynamic models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging grain boundary grooves in hard-sphere colloidal bicrystals.

Colloidal particles were sedimented onto patterned glass slides to grow three-dimensional bicrystals with a controlled structure. Three types of symmetric tilt grain boundaries between close-packed face-centered-cubic crystals were produced: Σ5(100),Σ17(100), and Σ3(110). The structure of the crystals and their defects were visualized by confocal microscopy, and characterized by simple geometri...

متن کامل

Solid-liquid Interface Energy of Metals at Melting Point and Undercooled State

By investigating the effects of the configurational entropy, the vibrational entropy and the bonding strength of solid-liquid atoms on the structure of solid-liquid interface, a model for the interface energy of rough solid-liquid interface has been developed. From present model, the non-dimensional solid-liquid interface energies for metals at melting point are predicted to be 0.66–0.73, which...

متن کامل

Characterization of Liquid Bridge in Gas/Oil Gravity Drainage in Fractured Reservoirs

Gravity drainage is the main mechanism which controls the oil recovery from fractured reservoirs in both gas-cap drive and gas injection processes. The liquid bridge formed between two adjacent matrix blocks is responsible for capillary continuity phenomenon. The accurate determination of gas-liquid interface profile of liquid bridge is crucial to predict fracture capillary pressure precisely. ...

متن کامل

Thermal Simulation of Solidification Process in Continuous Casting

In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...

متن کامل

Diffuse interface model for structural transitions of grain boundaries

The conditions for structural transitions at the core of a grain boundary separating two crystals was investigated with a diffuse interface model that incorporates disorder and crystal orientation Kobayashi et al., Physica D 140, 141 2000 . The model predicts that limited structural disorder near the grain boundary core can be favorable below the melting point. This disordered material is a pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017